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Introduction

Original reason for traffic lights:
safe crossing of antagonistic streams of vehicles

and pedestrians

Once they exist, they can be set in different ways:

optimization problem
Difficulties:

binary variables, large dimensions, many disturbances,

available measurements, real-time constraints
Many control strategies:

both heuristic and systematic
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Terminology

junction (UK); intersection (US)
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@ Approach detectors

() Stopline detectors

> Vehicle movements

Each vehicle movement
has an associated phase
number.

Phases have approach
detectors and/or stopline
detectors.

Stage: set of compatible
phases.

Signal cycle: one repetition

of all signals.
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Example: T—junction
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Isolated intersection control

Fixed-time (pre-timed)
Time-of-Day
Actuated

* Semi-actuated

* Fully-actuated
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Modelling a plan with rings

= Single ring controller
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= Dual ring controller
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Ring 1

Ring 2

Permitted/Protected left turns. )



Actuated control

Vehicle actuations change the phases
durations (and cycle length).

Min, max greens (pedestrians).

Phase skip; gap acceptance; recall.
* Semi-actuated (coordination)

* Fully-actuated (change cycles)
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Traffic actuated signal control

Calling &

Extension
Detectors




Operation of an actuated phase

Case 1: Max green not reached (Gap out).

Maximum Green

Total Green Time

A
Y

Minimum Green ){ - Extension Green

Passage Time

1

Phase Starts Detector
Actuation

Yellow Interval

1

Phase
Terminates
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Operation of an actuated phase

Case 2: Max green reached (Max out).

Maximum Green

A
Y

Total Green Time

A
Y

Minimum Green Extension Green

A

Passage Time

|

Phase Starts Detector

Actuation
Yellow

Interval

l ___________ s

Phase
Terminates
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Adaptive signal control

More sophisticated algorit

= include internal mode
dynamics and optimization

TMS:

s for

= compute signal parameters

including splits, cycles, offsets in
real-time based on measurements
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Adaptive strategies

Many strategies (research or commercial):

SCOOT
SCATS
OPAC
PRODYN
CRONOS

RHODES
UTOPIA
BALANCE
TUC
ACS-Lite

Examples are provided for general knowledge of the

students. It will not be taught inside classroom. .(I)ﬂ-
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SCOOT - UK

Split Cycle Offset Optimization Technique:

Preferences ettings

&
sible
Settings

Observations
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SCOOT - Loop detectors position,
demand profile, queue model
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Signal optimizers

Optimizer Frequency Change time
(seconds)

Split Every stage -4, 0, +4 (temporary)
-1, 0, +1 (permanent)

Cycle Once per cycle -4,0, +4
Offset Every 2.50r5 -4, 0, +4 (32 to 64)
minutes -8, 0, +8 (64 to 128)

-16, 0, +16 (128 to 240)



SCATS — Australia

Sydney Coordinated Adaptive Traffic System:

Objectives:
* Minimize stops (light traffic).
* Minimize delay (heavy traffic).
* Minimize travel time.

= Stopline detection.
= Network divided into regions.
= Each region divided into links and nodes.

" For each region calculate degree of saturation (DS)

for all nodes. .(l)ﬂ-

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



SCATS - Stopline detection

® C
e
—-

A 8 = a7

[ detector

Degree of saturation: DS = [green—(unused green)]/green



SCATS - Optimization

Cycle Length (CL):

* User defined equilibrium DS values are used to
determine the relationships between measured DS
and CL.

* The relationships are used to select a target CL
toward which the actual CL moves.

Offsets:
* Offset plans are selected by comparing traffic flows
on the links.

* The weighted three-cycle average volumes are used
for each candidate offset.



SCOOT vs. SCATS

= Model
= Central control

= Upstream detection
= Fixed traffic region

Algorithm
Distributed
Stop-line detection
Adjustable regions

* Closed systems: not all the details are known.

* Involvement of many (implementation specific)

heuristics.
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OPAC/RHODES: no fixed cycle

= Measured and predicted vehicle arrivals
= Optimization: minimize queues

= Rolling horizon

* Upstream detectors can provide
history for demand profiles.

* Smoothed volume can be used
for uniform profiles.

e Platoon identification and
smoothing can be used for

cyclic profiles.
I (P
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Introduction
@000

Large scale urban traffic networks

® Transportation systems play a vital role in
ensuring the economic growth and sustainable
development of society.

® Poor traffic management could lead to
environmental and economical damages due to
congestion.

e Traffic signal is one of the main measures of
traffic management.

® As the network size increases the complexity of
the problem increases.
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Introduction
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Large scale urban traffic networks

® Transportation systems play a vital role in
ensuring the economic growth and sustainable
development of society.

® Poor traffic management could lead to
environmental and economical damages due to
congestion.

® Traffic signal is one the main measures of traffic
management.

® As the network size increases the complexity of
the problem increases.
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Introduction
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Hence, distributed approaches can provide promising solutions.

Problem formulation - Dynamic cycle time in traffic signal of cyclic max-pressure control

Given:

< travel times of all links (or movements) considered

— control plans, i.e. phases, cyclic (order of phases), dynamic cycle lengths
Determine:

— green time durations for all phases at all intersections
y
Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 4 /39




Background

(0]0)¢) 0000 000000000 000000 000000 (0]0)0) @)

Outline

@® Background

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 5/ 39



Background
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Original Max-Pressure algorithm (Varaiya 2013)

® \Was initially proposed for scheduling packets in wireless communication networks.
e A distributed algorithm that maximizes throughput while stabilizing the queues.
® Algorithm inputs: queues, turn ratios, control plan (phases).

® Pressure: the difference between the upstream and the (average) downstream queue lengths.

Wim = Xym — Znn,pxm,p
Py = WimCim + Wim Cume

Link m’
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Background
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The original Max-Pressure traffic controller based on queue lengths (MP-QL)

The MP control policy u*™(t) : x — s, actuates the maximum pressured phase each time step t at each
Intersection:

u™(t) = argmax{ Ps(t)|s € Sn}, (1)

S, — set of all phases of intersection n.
The pressure of phase s at intersection n is calculated as:

P(t) = ) wim(t)crm(t)sim(t)
(/,m)

N wim(D)em(t), Vs € S,. (2)

(I,m):s) m=1

wim(t) = xim(t) — Z Fm,p(t)Xm p(t),  Vm &€ Out,, VI € In,, Vp € Outpis . (3)
p
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Background
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Original Max-Pressure traffic controller (MP-QL)

e
ﬁ

Pl (t - t*,Cl - 05)
(2-1)-05+(0—-0)-05
0.5

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure

P2 (tzt*,CZ =05)
—(2-0)-05+(1—-0)-05

= 1.5

'y

node n
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Background
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Since then several MP algorithms were developed...

e queue-based vs. time-based

e Most previous MP algorithm controllers are queue-based feedback.

e One real application was performed on time-based MP in Mercader et al. 2020.
e signal update: every time step vs. every cycle

e features:

e infinite vs. finite link capacity
e non-fixed phase sequence (acyclic) vs cyclic
e stability vs. work conservative

e phase switching gap (lost time)

o
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Fixed cyclic MP
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® Fixed cyclic MP

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 10 / 39



Fixed cyclic MP
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A modified cyclic Max-Pressure traffic controller based on queue lengths (MP-QL) - Kouvelas et al. 2014

Pressures:
P. »(£) = max (o, 3 W/(t)C/(t)), vien, se€S, (4)
(I,m)Es
Weights:
X/(t) Xm(t)
t) = — m————, V Out,, VI € In, 5
WI( ) Xmax,/ zm:r/’ Xmax,m m < . cn ( )

noden +1

P; = max(w;c;, 0)
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Fixed cyclic MP
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A modified cyclic Max-Pressure traffic controller based on queue lengths (MP-QL) - Kouvelas et al. 2014

Pressures:
P, »(t) = max (o, 3 W/(t)C/(t)), vl en, s€S, (4)
(I,m)Es
Weights:
X/(t) Xm(t)
t) = — m . tn, / I n
W/( ) — zm:r/, — Vm € Ou VI € In (5)

Green allocations for each phase included in each cycle time:

Gn — Cn - Llost,n — ngin,s,n ) Vs € Sn, (6)

S

Pt
A W

Gn + 8min,s,n - (7)
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Fixed cyclic MP
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Queue based Max-Pressure traffic controller (MP-QL) limitations

e The MP controller in Kouvelas et al. 2014 considers the queue lengths at /inks, thus
being mainly efficient at intersections with link-based phases.

o The spatial distribution of the queues is neglected (Li and Jabari (2019)).

1
1 Qu = Qb t Qb ,.-1-.'
.’ Le T .o L ’ -
Qe < Qd I ’

e Impractical, due to inefficient online data collection in the real world.
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Fixed cyclic MP
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Real implementation (May 30, 2018)

Mercader, Uwayid, and Haddad 2020 (TR-C)

® MP controller based on travel times (TT) achieves better performance than the historic performance delivered
by the optimized fixed control used at the intersection.
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Fixed cyclic MP
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The cyclic Max-Pressure traffic controller based on Average Travel Time (MP-TT) - Mercader et al. 2020
® s a cycle-step algorithm with link structure,

® it shares the same equations of queue length based MP controller (MP-QL) in Kouvalas 2014,

TT(t) TTm(t)
t) = — m——=, V Out,, | € In, |, 8
w(t) TTr, Zr/, m € Ou € In (8)
TT(t) [s] — average travel time during the cycle t at the link /,

TTeg [s] — travel time in free flow at link /.

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 14 / 39
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Contributions... Improved cyclic time based MP controller:
(C1) Enhanced relation of the queue normalization with travel time (delays),

(C2) Improved generic algorithm that can be applied over a larger variety of intersections
(heterogeneous networks, lane based).

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 15 / 39



Fixed cyclic MP
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(C1) Average Travel Time (MP-TT) = Travel Time Delays (MP-TTD)

Inspired from Bureau of Public Roads (1964)
T\

T

(from Maerivoat et al. 2008)
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Fixed cyclic MP
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(C1) Average Travel Time (MP-TT) = Travel Time Delays (MP-TTD)

Inspired from Bureau of Public Roads (1964) TT = TTg [1 + a(Xn):ax)B]
" It is used to support the convex relationship
between the normalized travel time and the
| normalized queue length,
: 3 TT—TTffN X (9)
T | T T Xmax
i o
0 Qpc q

B — a fitting parameter to the nonlinearity

(from Maerivoat et al. 2008) re|ati0n.

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 16 / 39



Fixed cyclic MP
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(C2) Improved generic algorithm (heterogeneous networks, lane based)

Link based Movement based

noden +1

Wim = Xim — Zrm,pxm,p
Py = wymCm + Wim Cym

Link m'

Lane based

w = B dln,l(t) _Zn Zr 4 dln,m(t)
L TTff,ln,l Lmalinm TTff,ln,m

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 17 / 39



Fixed cyclic MP
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Travel time delays based MP traffic controller (MP-TTD)

The new suggested equations for the pressures and weights are,

where

Pon(t) = max (0,3 win(t)en(t)), Vs €S,

InEs

W/n(t) _ dln(t Z - m(t) Z i m(t 7d_l;_£ftl)n

InEm

Vines, me Outyyp, [ €Iny,

d/n(t):max( TTIn(t) - TTff,/m O) 9

rm,p(t)
Nmp

rln,m(t)zz

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure

Vm € Inpy1, p € OU-tln,n—|—1 3

(10)
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Fixed cyclic MP

00000000 e

Green allocations with fixed cycle: (similar to Mercader et al. 2020, Kouvelas et al. 2014)

G, = C, — Llost,n — ngin,s,n ) Vs € Sy, (14)
Ps n(t)
gS,”(t) — : Gp + Bmin,s,n - (15)
ZS Ps,n(t)
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Dynamic cyclic MP
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® Dynamic cyclic MP
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Dynamic cyclic MP
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Dynamic cyclic structure of MP algorithm

Problem

Previous works of cyclic-based MP control have offered a cyclic notion to actuate the controller in a cyclic
manner. Yet no input has been provided for

® optimal cycle length for each intersection,

® offset problem: in a grid network structure along with the dynamic and stochastic nature of the trips, it
is not clear what the main phase of the intersections and how to coordinate them.

v
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Dynamic cyclic MP
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Dynamic cyclic structure of MP algorithm

Motivation

® developing two dynamic cyclic schemes (bounded and unbounded cycle lengths) with low
computational complexity,

® ecvaluating the developed control schemes via comparing traffic performances from simulation results

between dynamic and fixed cycle lengths.

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure

22 / 39




Dynamic cyclic MP
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Fixed Cycle

e Fixed phase sequence (cannot skip
phases)

e A fixed cycle is determined a priori, and
is equal in consecutive intersections

e Green allocations are updated each
cycle time

Dynamic Cycle

e Fixed phase sequence (cannot skip
phases)

e The phase actuation is updated each
time step

e If the activated phase holds the
maximum pressure it is re-activated
another time step, else, the next phase
in the sequence is activated

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 23 / 39



Dynamic cyclic MP
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Travel time delays based MP traffic controller (MP-TTD)

The new suggested equations for the pressures and weights are,

where

Pon(t) = wi(t)an(t), Vse€S,

InEs

win(t) = {77 dln(t Z” m(t) I; rin,m(t) | ;d_?—f—ftl)n

Vines, me Outy,, | €In,,

d/n(t) = max( TT/n(t) — TTﬂf,/n, O),

rm,p(t)
Npp

rln,m(t) — Vm € Inn—l—l, p < Out/n,n—l—l ;

(16)

(17)

(18)

(19)

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure
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Dynamic cyclic MP
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Dynamic cyclic structure of MP algorithm - Unbounded length

Algorithm 1 Dynamic Cyclic Max-Pressure - Unbounded

1: procedure DYNAMICCYCLEMP(gs,, min; Sn, Sin,t) #Cycle fixed sequence should be determined
2 if t < si »,min then

3 t+—t+1

4 else

o: t< 0

6 # Calculate the weights and the pressure based on the MP-controller
7 win(t) = {728 — 57 1y (8) e Tinm (1) §/ TR

8 Psi () = 2ines,,, Win(t)Cin(t)

9 if s;, = argmax; (P, ,) then
10: return s; , #Actuate the same phase again
11: else
12: return s;; 1, #Actuate the next phase in the sequence
13: end if
14: end if

15: end procedure

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 25 / 39



Dynamic cyclic MP

O0000e

Dynamic cyclic structure of MP algorithm - Bounded length

Algorithm 2 Dynamic Cyclic Max-Pressure - Bounded

1:

© ®

10:

11:
12:

13:
14:

15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

procedure DYNAMICCYCLEMP (maxCycle, s, min, Sn, Sin, t,m) #Cycle fixed sequence should be
determined, m - number of phase activation within the cycle, e.g. m=1 is the first phase activated in
a cycle.
if t < 9s; ,min then
t+t+1 for
else
10
m<—m-+1
# calculate maximum times phase i can be activated in a single cycle (a cycle with bounded
length)
maxNumbers, ,, < (maxCycle — L — Zézlfth(sn) Gs; n,min)/ Jso n,min
for j in length(S,) — 1 do

maxNumberg;,,

gsi’n,min

< 1+ (maxNumbers;, —m) + m # If the phases share the

gsi+17n,min
same minimum green then this equation would be static, max Numbersg,
end for
# Calculate the weights and the pressure based on the MP-controller

win(t)  { TR = 3 () e T () {f 7%
‘Psi,n (t) < Zlnesi » Win (t)cln (t)
if s;,, = arg max;(Psi,n) and m < maxNumberg, , then
return S;, and m #Actuate the same phase again and return the phase number in the

1n & 1L+ mazNumbers;

cycle.
else
if Si+1,n = S0,n then
m <— 1 #If the cycle ends return the count of phases m back to 1
end if
return s;;1, and m #Actuate the next phase in the sequence
end if
end if
end procedure

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure
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Simulation results
o000 O000 O00000000 O00000 O00000 000 O

Outline

@ Simulation results
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Simulation results
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Case study: 3x3 Grid Network Results

Pl P2 P3 P4
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MP-TTD: fixed cycle vs. dynamic (unbounded) cycle

Simulation results

o] JeJele]e;

o different fixed cycles (60,80, 100) vs. dynamic cycle.
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MP-TTD: fixed cycle vs. dynamic cycle

Il MP-TTD-Cyc=100 sec
3500 [ Min Green

Il MP-TTD-Cyc=60 sec
3000 Il MP-TTD-Cyc=80 sec
2500 I MP-DynCycle

Queue (veh) 2000

1500

1000

500

0

Il MP-TTD-Cyc=100 sec i
[ Min Green

2.5 EEE MP-TTD-Cyc=60 sec
Il MP-TTD-Cyc=80 sec

2.0 I MP-DynCycle

Delay (s) 15

1.0

0.5

0'00 25 50 100

Time (min)

e dynamic cycle provides superior performance compared with fixed cycle MP.
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Simulation results
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MP-TTD: Bounded vs. unbounded dynamic cycle

o different bounded cycles (60,80, 100) vs. dynamic cycle.

5000
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Travel Time (5 000

(u,0,median)
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0 ———F128, 169, 95)

—_—1101, 71, 84)
e
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——

*

W M

(113, 162,

— —

MP-TTD-FixedCyc=60 sec
MP-DynCycle
MP-TTD-BoundCyc=100 sec
MP-TTD-BoundCyc=60 sec
MP-TTD-BoundCyc=80 sec

85)

e The less algorithm is bounded the more stable and less performance variation.

Traffic Signél Controller
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Simulation results
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MP-TTD: Fixed vs. bounded dynamic cycle

6000
5000 El MP-TTD-FixedCyc=80 sec
HEl MP-TTD-BoundCyc=80 sec
| }
4000 +

Travel Time (s)
(4,0, median)
30001

e

20001

1000+

—1— _ (113,162, 85)
R ——

I
0. ——T— (322, 549, 141)

Traffic Signal Controller

e A bounded dynamic cycle (maximum cycle 80s) algorithm can perform better than a fixed cycle
(80s) scheme.
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Simulation results
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MP-TTD: Bounded vs. unbounded dynamic cycle
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Simulation results
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Summary of simulation results

e Choosing appropriate fixed cycle is vital to ensure better utilization of the cyclic MP
controller.

e The developed dynamic cyclic MP algorithm can manage to surpass other existing fixed

cyclic MP schemes, providing better coordination and better green allocations, both
result in better performances.

e The less bounded dynamic cycle is the more stable and less performance variation, and
it performs better than the existing fixed cycle scheme.

Adaptive Traffic Signal Control: Principles and Applications of Max-Pressure 34 / 39



Experimental study
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@ Experimental study
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Experimental case study
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Communication architecture

® Bluetooth Sensor Database: This component

serves as the central repository where data from
Bluetooth sensors is collected and stored.

Data Processing

Y

Database

® Data Processing: In this stage, the raw data
collected from the sensors is processed to

prepare it for further subsequent analysis.

® MP Control: Here, the processed data is
analyzed using the MP-TTD algorithm,
performing adaptive algorithm calculations.

MP Control

¢ Environment Activation: Based on the results

from the MP-TTD calculations, the system
adjusts the green time durations, directly
interacting with the traffic signals in the
real-world environment.




Constraints Phases green duration

@ « New algorithm ¢

® Same Flow chart: adapt to the same flow & ®
chart, without loop detectors. & o &

® Fixed cycle time & effective green: no change &-@

for the cycle. o &

¢ &

® Pedestrian green wave : pedestrian cross

without stopping. >

4 our

Challenges of Data collection — @ - @S- @S~ Q

® Feedback delay: the control is activated in
large delay.

¢ low penetration rate: 5-10% penetration rate.

® Data Filtering : difficult to filter with high
variations.




Experimental case study:Data collection
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Comparison of Movement 1 green duration
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Experimental case study:Performance results
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The data reveals a 47.5% queue improvement with the adaptive controller over the
actuated control from 07:00 to 20:00.
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Figure: Experimental case study results: Queue per movement throughout the day from 7:00 to
20:00.
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Conclusions

e The developed MP-TTD controller can manage surpass other existing max pressure
schemes, providing an enhanced estimation of the traffic state and an improved green
allocation, both result in better performance.

e The adaptive signal control algorithm, through experimental application, demonstrated
potential for enhancing traffic flow.

e in a practical experimental case study using real-time data from Bluetooth sensors, the
MP-TTD controller was integrated with existing traffic signal systems without requiring
major infrastructure changes.

e the MP-TTD controller shows promise as a tool for improving urban traffic signal
control. Its real-world efficacy and adaptability suggest it could be beneficial for urban
and possibly rural settings.
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